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INTRODUCTION:

Non Intrusive Load Monitoring (NILM) is a powerfu
techniqgue to provide Iinsight to residentia
customer and achieve energy savings and demanc
side management[1]. Most NILM algorithm are

based on supervised machine learning method and
require higher sensing capabilities than what most
common smart meters can offer. Additionally,
labelled data are expensive to acquire and
supervised method are hard to apply on a generic
scope. Hence, we propose fully unsupervised
method that require only active power
measurement sampled at 15min time period.
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CATEGORICAL DISAGGREGATION

Cooking

Coffee maker, stove, oven,
microwave, kettle

Cook, eat

ICT

Printer

Use computer, work, homework

Housekeeping

Washing machine, dishwasher,
tumble dryer, vacuum cleaner

Clean, wash dishes, laundry

TV, stereo, PC, TV box, laptop,

Entertainment DVD, gaming console All
Light Lights All
Fridge Fridge, freezer
Heating Hairdryer, HP, boiler Shower
Standby Modem

Generate activity chain for
each person according to L
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Supervised Algorithms
» Combinatorial Optimization[3] (CO)

» Factorial Hidden Markov Model[ 3]
(FHMM)

= Graph Signal Processing[4] (GSP) ECO:6: 127 23
= Discriminative disaggregation via SMARTENERGY-KOM:7: /5 37
sparse coding[5] (DDSC) UK-DALE[8]|365 91

Uncertainty on share of energy

Entertainment

Housekeeping

AN N

xt: activity of one person at time t
S;. set of possible activities according to power budget L
mr;: Initial activity probability , P(x° = ;)

a; j: transition matrix, P(x* = §;|xt~1 = §;)

m;, a; j are function of G,E,D

a; jis also a function of the hour of the day and adjusted
according to power budget
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Where Pt and Pt are respectively the estimated and reference
(ground truth) power profile for category m.

CONCLUSION:

We presented an unsupervised NILM algorithm
that requires low sampling frequencies. The results
shows it performs in the same range as standard
supervised algorithm of the field, while it's
computational cost scale linearly with the test
period length. As the algorithm requires nothing
but the active power measurement and some
information about the households, it's suitable to
be applied by a utility to provide an additional
service to Its residential customers.
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