

Achieving savings through energy monitoring, forecasting and optimization: The European FEEdBACk project

> Marina Dorokhova PhD Candidate EPFL PV-LAB

FEEdBACk

What is FEEdBACk?

Fostering energy efficiency and behavioral change through ICT

Aggregator/Retailer

Adjust energy consumption to market prices

ESCO / Building owner

- Install meters and sensors
- Minimize energy cost
- Reduce overall consumption

DSO

- Adjust energy consumption
- Enhance grid operation
- Provide ancillary services

Work-Packages

• Overall project structure:

WP1.

Project management

WP2. Users' profiling and segmentation

WP3.

Energy monitoring, forecasting and optimization

WP4.

Digital marketplace and gamification

WP5.

Demonstration

WP6. Impacts assessment and Business Models

WP7. Dissemination and exploitation results

Leader:

The main objective of this WP is to design and develop innovative ICT tools and applications that will be used to promote the interaction with the end users, thus motivating them to engage in behavioural changes towards energy efficiency goals.

ICT-based Platform for Energy Efficiency

Demonstrators

HOUSES

Load disaggregation

Towards inferring detailed electrical consumption

Load disaggregation algorithm

*Device Usage Estimation

Device Usage Estimation Algorithm

Device Usage Estimation Algorithm

Category	Appliances	Related activities
Cooking	Coffee maker, stove, oven, microwave, kettle	Cook, eat
ICT	Printer	Use computer, work, homework
Housekeeping	Washing machine, dishwasher, tumble dryer, vacuum cleaner	Clean, wash dishes, laundry
Entertainment	TV, stereo, PC, TV box, laptop, DVD, gaming console	All
Light	Lights	All
Fridge	Fridge, freezer	
Heating	Hairdryer, HP, boiler	Shower
Standby	Modem	

Recognized activities:

- Clean
- Use computer
- Cook
- Wash dishes
- Eat
- Homework
- Play game
- Laundry
- Music
- Watch TV
- Shower
- Work

No appliances used:

- Sleep
- Outdoor

Device Usage Estimation Algorithm

Comparison metrics:

Comparison algorithms:

- Combinatorial optimization
- Factorial Hidden Markov Model
- Discriminative Disaggregation via sparse coding
- Graph signal processing

Comparison datasets:

- ECO
- SMART-ENERGY.KOM
- UK-DALE

8% average uncertainty on energy share

Unsupervised

Low sampling rate data

Efficient computing

FEEdBACk

Occupancy forecasting

Enhancing automation strategies in intelligent buildings

Great potential for building automation – intelligent HVAC control

Algorithm's testing in Porto demonstration site:

Model	Validation	Unseen
Baseline	61.5%	61.9%
Linear SVM	94.8% (0.76%)	94.2%
Optimized SVM	97.5% (0.47%)	97.1%
Bagging	98.5% (0.72%)	98.5%
AdaBoost	95.5% (0.64%)	95.0%
Neural Network	95.8% (0.80%)	96.9%

Time period in the past

Time period in the future

Model	Accuracy	Std
Baseline	83.6%	8.5%
LSTM	92.4%	9.5%

Acknowledgments

EPFL, IMT Neuchâtel, PV-LAB Prof. Christophe Ballif

> Energy Systems Group: Dr. Nicolas Wyrsch Jordan Holweger Lionel Bloch

FEEDBACK-PROJECT.EU

@FEEdBACkH2020

<u>marina.dorokhova@epfl.ch</u> École polytechnique fédérale de Lausanne PhD Candidate, PV-LAB

THANK YOU

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 768935